
PHYSICAL JOIN
OPERATORS
in SQL SERVER

Ami Levin is a Microsoft
SQL Server MVP, with over
20 years of experience in
the IT industry. For the
past 16 years he has been
consulting, teaching and
speaking on SQL Server
worldwide. He moderates
the Israeli MSDN SQL
Server support forum, and
is a regular speaker at
Microsoft conferences.
Levin’s areas of expertise
are data modeling,
database design, T-SQL
and performance tuning.

AUTHOR:
Ami Levin

Introduction4

Nested Loops7

Merge Operator19

Hash Operator26

Summary34

TABLE OF CONTENTS:

CHAPTER 1:
Introduction

// Page 4

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

SQL Server implements three different physical
operators to perform joins. In this eBook we will
examine how each operators works, its advantages and
challenges. We will try to understand the logic behind
the optimizer's decisions on which operator to use for
various joins using (semi) real life examples and how to
avoid common pitfalls.

In this eBook, I'll focus on the most common type of
join, the 'E-I-J' (or 'Equi-Inner-Join') which is just a cool
sounding name for an inner join that uses only equality
predicates for the join conditions. With sadness, I will
skip some extremely interesting issues concerning joins
such as logical processing order of outer joins, NULL
value issues, join parallelism and others. This eBook
focuses on helping you make your E-I-J joins faster.
We'll accomplish this by helping you understand how
the SQL Server optimizer decides which physical
operators it will use to carry out your query joins. We'll
show you situations where the SQL Server optimizer is
occasionally tricked into choosing a slower method by
the characteristics of the data and SQL you wrote. If
you understand these pitfalls, you can code to
overcome them, thus speeding up your queries - and
impressing your colleagues and bosses.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 5

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

As amazing as the SQL Server optimizer can sometimes
be, it's not making its decisions intuitively. It's using the
information it has to work with. Recall that a join is
basically 'looking for matching rows' from two inputs,
based on the join condition. The creators of the
optimizer have made three techniques available to it for
carrying out these joins:

• Nested Loops

• Merge

• Hash Match

For this eBook I will use an analogy of two sets of
standard playing cards. One set with a blue back and
another with a red back that need to be 'joined'
together according to various join conditions. The two
sets of cards simply represent the rows from the two
joined tables, the red input and the blue input - "Now
Neo - which input do you choose"?

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 6

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

CHAPTER 2:
Nested Loops

// Page 7

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

Probably the simplest and most obvious operator is the
nested loops operator. The algorithm for this operator is
as follows:

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 8

The 'outer loop'
consists of going
through all rows
from the blue input
and for each row;
some mysterious
'inner operator' is
performed to find
the matching rows
from the red input.
If we would use this
operator to join our
sets of cards, we would browse through all the blue-
back cards and for each one we would have to go
through all the red-back cards to find its matches. Not
the most efficient way of matching cards but it probably
would be most people's first choice... if there are only a
handful of cards to match.

Let's take a closer look and see when nested loops are
a good choice. The first parameter to consider, as with
any iterative loop, is the number of required iterations.
For nested loops to be efficient, it requires at least one
relatively small row set to be used as the outer loop
input that determines the number of iterations.

Flowchart 1 – Nested Loops

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

Remember that this does not necessarily reflect the
number of rows in the table but the number of rows
that satisfy the query filters.

The second parameter to consider is the (intentionally)
vague "Find matching rows in red input" part in Flow
Chart 1 above. Assuming that we do have a small input
for the outer loop, hence a small number of required
iterations, we now must consider how much work is
required to actually find the matching rows in every
iteration. "Find matching rows" might consist of a highly
efficient index seek but it might require a full table scan
if the join columns are not properly indexed; making
nested loops a far less optimal plan. Since it is very
common for joins to be performed on one-to-many
relationships, and since the parent node in these
relationships is often the smaller input (the 'one' in the
'one-to-many'), and since this parent node is always
indexed (must be a primary key or a unique constraint),
the well known best practice rule that requires that FK
columns should be indexed, now makes perfect sense,
doesn't it?

Let’s see a few examples

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 9

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

* Note: All the queries used in this chapter can be
found in the demo code file, plus a few more. I highly
recommend that you play around with the code,
change parameters and select list columns, try to use
outer joins and even create some indexes and see how
they affect the query plans. Just remember to drop
your indexes before proceeding to the next query so
that the demo plans will remain valid.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 10

SMALLER OUTER LOOP WITH A WELL INDEXED INNER
OUTPUT

The most obvious case for nested loops is when one
input is very small (is 1 row small enough?) and the
other input is ideally indexed for the join. In Execution
Plan 1 you can see that the optimizer retrieved the
single row for product 870 from the Product table using
a PK clustered index seek (needed to retrieve the
Product Name) and all the matching Order IDs were
retrieved using the non clustered index on the Product
ID column of the Order Detail table.

http://www.dbsophic.com/images/stories/articles/physical-join-operators-demo-code.zip
http://www.dbsophic.com/images/stories/articles/physical-join-operators-demo-code.zip
http://www.dbsophic.com/images/stories/articles/physical-join-operators-demo-code.zip
http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 11

Query 1

Execution Plan 1

* Tip: The optimizer was clever enough to duplicate
the filter for Product ID to both tables although the
predicate specifies only the Product table. Since the
filter and the join condition are based on the same
column and since the join is an equi-join, the optimizer
knows that when constructing its physical operators, it
can add a second predicate ‘AND SOD.ProductID =
870’ to optimize the data access for the Order
Detail table.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

NESTED LOOPS JOINS WITH TABLE SCANS

If we just add the Order Quantity column to the select
list as in Query 2, the index on Product ID (which does
not contain the Order Quantity column) is now not
enough to 'cover' the query, meaning that it does not
include all the data required to satisfy the query. The
optimizer can either perform a 'lookup' (use the
pointer from the index to fetch the full row from the
table itself) for each Order Detail row to get it (nearly
5,000 lookups...) or alternatively it can simply scan
the Order Detail table, retrieve both Product ID and
Order Quantity. In this case, since there is just
one Product row to join hence the table only needs to
be scanned once, and since the table is not very large
(which would make the scan expensive), the single
scan option is probably better than the alternative of
performing thousands of lookups. Indeed, this is
exactly what the optimizer chooses to do in this
situation as you can see in Execution Plan 2.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 12

Query 2

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 13

* Exercise: Try to change the predicate to
‘P.ProductID IN (870,871)’. This would mean that now,
to use the same plan as above will require two full
scans instead of just one. Do you think that this will
still be the most efficient plan? Try it and see what
plan the optimizer chooses. You can find the code for
this exercise (Code sample #2b) in the demo code.

Execution Plan 2

NESTED LOOP JOINS WITH LOOKUPS

Now, let's play around a bit with the parameters. In
Query 3, I have changed the predicate to filter for
three products instead of one, but I used products
that are far less commonly ordered. Think of three
colors of 'White-Out' ('Tipp-Ex' for you Europeans)

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

for the computer screen - not the hottest seller... Now,
a slightly different use of nested loops emerges. Note
that product 870 exists in nearly 5,000 Order Detail
rows, but only 13 Order Detail rows contain one or
more of Query 3's three products (897,942,943). The
optimizer always consults the column statistical
histograms so it is very aware of this fact. To join only
product 870, the optimizer chose to perform a single
scan instead of an index seek + 5,000 additional
lookups. For the three products in Query 3, it could
either perform three full scans or revert to using an
index seek + 13 additional lookups. What do you think
is the right choice?

The answer is graphically portrayed in Execution Plan
3. Note that the execution plan incorporates two
nested loop physical operators, and that both
constitute logical inner joins. The one on the right is
our actual table join, and the one on the left denotes
the full-record lookup from the Order Detail table
(required in order to retrieve the Order Quantity)
which, in a sense, is also a join between the Order
Detail table and the result of the first join.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 14

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 15

Query 3

Execution Plan 3

Probably one of the most common pitfalls of the query
optimizer is under-estimating the number of required
iterations for a nested loops operator due to (partial
list):

• Statistical deviations

• Outdated statistical data

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 16

• 'Hard to estimate' predicates such as compound
expressions, sub queries, functions or type
conversions on filter columns

• Multiple predicates estimation errors

When analyzing a poorly performing query, one of the
first things I do is to look at the 'Estimated number of
rows' vs. the 'Actual number of rows' figures of the
outer input of the nested loop operator. The outer
input is the top one in the graphical query execution
plan. See for example Execution Plan 4. I've seen
many cases where the optimizer estimated that only a
few dozen iterations will be required, making nested
loops operator a very good choice for the join, but in
fact tens (or even hundreds) of thousands of rows
satisfied the filters, causing the query to perform very
badly.

For Query 4 below, the optimizer estimated that ~1.3
products will satisfy the query filters when in fact, 44
products did. This seemingly small error led the
optimizer to believe that only 616 rows will be
matched from the Order Detail table and that
estimation made it choose the same plan as the
previous example, using an index seek and additional
lookups. The optimizer estimated that it will require
only 616 key lookups when in fact, 20,574 were

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

required. This might seem at first like a flaw in the
optimizer, but only to the degree that mind reading
is hard to program. You'll see why in the answer to
Challenge #1 at the end of this section.

* Challenge #1: Can you guess what misled the
optimizer to make the estimation error? See the
answer at the end of this section.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 17

Query 4

Execution Plan 4

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 18

* Exercise: The demo code contains Query 4 as
shown here, plus hints that force the optimizer to use
nested loops, hash match or merge joins respectively
(Queries 4b, 4c and 4d). Use the demo code to
execute these query variations. Trace the executions
with profiler to benchmark these alternatives and see if
the optimizer was correct to prefer nested loops for
this query. Remember that logical reads might be
misleading so pay close attention to both CPU and
duration when evaluating the queries’ true efficiency.

WICKED A-SEQUENTIAL PAGE CACHE FLUSHES

One more issue we need to consider with nested
loops is the issue of sequential vs. a-sequential
page access patterns. You might recall from my
article that nested loops are characterized with a
high number of logical reads, as the same data
page might be accessed multiple times. For small
row sets, this is usually not an issue as the pages
are cached once and subsequent reads are
performed in memory. But, if the system
experiences memory pressure and in the common
case where the outer loop consists of a large
number of rows where the distribution of the data
(in respect to the order of the join columns

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.dbsophic.com/SQL-Server-Articles/sql-server-logical-reads-what-they-really-tell.html

retrieved for the outer loop) within the pages is more

or less random, a real performance nightmare might
occur when a page is repeatedly flushed from the
buffer cache only to be physically retrieved a few
seconds later for retrieval of another row, for the same
join! If you were the query optimizer - go with the
flow for a moment - how would you avoid such a
performance 'nightmare'?

* Challenge #1 answer: The filter consists of three
predicates. If you inspected each predicate by itself
(armed with the statistical distribution histograms of
the values in each column), you would see that the
predicates are highly selective, meaning that they filter
out a large percentage of the rows as the values used
are very close to the maximum values for each of the
columns. Using AND logical operators for these three
highly selective predicates leads the optimizer to
estimate that only a few rows will satisfy all three
predicates. This is correct from a statistical perspective
under the assumption that there is no correlation
between the predicates. But... unbeknownst to the
optimizer, the values in these three predicates are
actually closely related. The query filters for the
products that take the longest to manufacture, making
them the products with the highest cost, and naturally
the ones with the highest list price. So it's more or less
the same group of products that satisfy each

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 19

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

predicate. These and other conditions which make
selectivity extremely hard to estimate are much more
common in production systems than most people
would think.

I want to use this opportunity to congratulate the
Microsoft SQL Server optimizer team for producing an
unbelievably intelligent optimization engine which is
(IMHO) by far the best of its kind on the market, and it
just keeps getting better with every new version. It is
getting harder and harder for me to come up with such
examples where I manage to make it err.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 20

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

CHAPTER 3:
Merge Operator

// Page 21

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

A merge operator can be used only when both sets of
rows are pre-sorted according to the join
expression(s). For example, a Product table index
and Order Detail table index both sorted by Product ID
(recall Execution Plan 3 from the previous chapter).
The algorithm is extremely simple, elegant, and
efficient:

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 22

Since the rows are
sorted according to the
join expression(s), we
can immediately begin
the matching process.
Simply get the first
row from the blue
input and the first row
from the red input. If
they match, output
them and continue to
the next row from the
red input. If not, fetch
the next row from the
blue input and repeat
the processes until all
rows from the blue

Flowchart 2 – Merge

input have been processed. If we were to join our
cards this way, we would first lay both sets on the
table, sorted according to the join condition, let’s

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 23

say suit and rank. We will probably spread them one
row below the other and simply start picking the cards,
moving from left to right on both rows and matching
as we progress. Of course, we could decide to sort
them just for this purpose even if they weren't sorted
to begin with.

MERGE IS A HIGHLY EFFICIENT OPERATOR

The merge join is probably the most efficient of all
three operators. It combines the advantage of hash
match where the actual data needs to be accessed only
once with the advantages of nested loops - low CPU
consumption and enabling of fast output of matched
rows for further query processing. Moreover, it tops
them both by eliminating the potential for a-sequential
page flushes. Since the days of SQL Server 6.5, I have
witnessed how the query optimizer tends to favor
merge joins more and more with every new release. In
SQL 2000, we would see merge joins almost exclusively
for joins that had the appropriately pre-sorted indexes,
and for queries that included an ORDER BY clause that
required the sort. In SQL 2008 the optimizer cleverly
realizes that the advantages of this join operator justify
pre-sorting of one or both inputs just for the sake of
using merge in many more cases than previous versions
did.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 24

Let's check out a few examples that use the Merge
join operator.

MERGE JOIN WITH CLUSTERED INDEXES

The most obvious example, as can be seen in Query
5 , is a join that uses the keys of the clustered indexes
of both tables. Since a clustered index is actually the
table itself, sorted in the order of the clustered index
key(s), the clustered index covers all queries and can
be used to retrieve any (non BLOB) column in the table
you specify in your SELECT clause. Even the SELECT *
in the query below will not require any additional table
lookups. But remember that there is still a penalty to
pay for retrieving all columns unnecessarily as both
tables will need to be fully loaded into memory and
sent over the network.

Query 5

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 25

Execution Plan 5

* Challenge #2: There are no expression
computations in this query. Try to guess what the
‘compute scalar’ operators in Execution Plan 5 above
are for…

Hint: The answer is at the columns node of these
tables in SSMS object explorer.

MERGE JOIN WITH NON CLUSTERED INDEXES

Merge will be very efficient when one or both tables
have a non clustered index that sorts the join column.
This is twice as true if the index covers the query, as in
Query 6.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 26

Query 6

Execution Plan 6

* Exercise: In the demo code I’ve added two more
examples (Queries 6b and 6c) where a small change to
the query changes the physical operator chosen by the
SQL Server optimizer. Try to play around with the
parameters and see how the optimizer changes its
decisions.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

ORDER BY CLAUSE MAY COAX A MERGE JOIN

As I mentioned earlier, in many cases you will see that
the optimizer decides to sort one or both inputs just to
use the merge operator. This will usually happen when
the inputs are not very large and the alternatives are
worse. This decision becomes even easier if the
optimizer sees that performing a sort provides an
additional benefit, allowing the optimizer to 'kill two
birds with one stone' (see disclaimer below). For
example, the pre sorting may help facilitate the highly
efficient stream aggregate for GROUP BY or DISTINCT
clauses, UNION operators, analytical rankings or for
delivering the result set in the order of the ORDER BY
clause, as is the case in Query 7 .

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 27

Query 7

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 28

Execution Plan 7

* DISCLAIMER: No birds (nor any other animals)
were harmed for the making of this script.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

CHAPTER 4:
Hash Operator

// Page 29

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

The algorithm for a hash match join operator is a little
more complicated:

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 30

Each row in the blue input is fetched and a hash
function (explained soon) is applied on the join
expression. The row (in full, part or just a pointer) is
placed in a 'bucket' which represents the result of
the hash function. After all relevant rows have been
'hashed' and placed in their appropriate buckets; the
rows from the red input are fetched one by one. For
each row, the same hash function is applied to the
join expression and matches are looked for (probed)
within the appropriate bucket only. If we would use
this operator to join our playing cards, we would need

Flowchart 3 – Hash Match

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 31

to decide on an appropriate hash function. For
example, let's assume our hash function is the card's
suit. In this case, we would first separate the blue-
back cards into 4 piles (buckets) by suit - spades,
clubs, hearts and diamonds. Then, we would pick the
red-back cards, one by one, look at their suit and try
to find their match within the appropriate pile only.

The tricky part of achieving high efficiency with the
hash match operator is choosing the right hash
function for a particular data set. This is a highly
challenging task which is handled by expert
mathematicians and is one of the most secret aspects
of the query optimizer. Imagine what would happen, if
in the card example above, we would use the same
hash function (card suit) for a set of 1 million cards
that consists of spades only... On the other hand,
imagine what would happen if we used the same
function when the same million cards consisted of a
million different (hypothetical) suits? Remember that a
join may be performed on any comparable data type
with highly varying distribution patterns and with
highly varying filter patterns... It's an extremely
complicated and delicate balance.

The hash match operator has some additional
overhead we need to consider as well. Besides the

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

obvious CPU overhead for applying the potentially
complicated hash function on every row in both inputs,
memory pressures may have devastating performance
results for this operator as well. The hash buckets
must be persisted until the whole operation completes
and all rows are matched. This requires significant
memory resources, in addition to the actual data
pages in the buffer cache. In case that memory is
needed for other concurrent operations or in case
there is simply not enough memory to hold all buckets
for large hash joins, the buckets are flushed from
cache and physically written to TempDB. Of course,
they will need to be physically retrieved into memory
when their content needs to be updated or probed
which might prove to be quite painful for those people
who like their results delivered in less time than if sent
by first class mail. The query optimizer is aware of this
fact and may consider the amount of free memory
when deciding between hash match and alternative
operators.

So when is a hash match join a good choice? Well, I
would say far less than it's actually being used, and
not due to the optimizer fault... The main advantage of
hash match over nested loops is that the data is
(seemingly) accessed only once. But, remember that
the probing of the buckets is in fact repeated access of
the data (or part of it) which does not constitute

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 32

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

logical reads and therefore is a 'hidden' from our eyes
and most monitoring tools. Hash match might be the
best choice when both inputs are very large and using
nested loops may cause 'a-sequential page flushes'. In
most practical cases, the optimizer will revert to hash
match when the inputs are not properly indexed
(intentionally or not). Optimizing your indexes will, in
many cases, cause the optimizer to change its choice of
execution plans to use nested loops instead of hash
match, significantly reducing CPU and memory
consumption, potentially affecting the performance of
the whole workload. Let's check out a few examples
where the optimizer chooses to use hash match.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 33

HASH MATCH USED WITH VERY LARGE INPUTS

The simplest case is when both inputs are simply too
large for nested loops. In Query 8 , both inputs are
~120,000 rows (source not shown, but you can trust
me). Although both are 'ideally' indexed for the join
column and although the indexes cover the query so
no lookups are required, nested loops will simply
require too many iterations. Remember that even an
efficient index seek might consist of a few page
accesses for traversing the non leaf level of the index.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 34

Query 8

Execution Plan 8

HASH MATCH USED WHEN MULTIPLE LOOKUPS ARE
2nd BEST ALTERNATIVE

In Query 9 below, both inputs are not small enough (P
~500 rows, SOD ~120,000 rows) to make nested
loops efficient. It's interesting to see that even
though Product ID is indexed, nested loops will
probably not be a good choice here. The main reason
is that the index on Product ID does not cover the
query and OrderQty will need to be looked up for each
order which sums up to ~120,000 lookups.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 35

Query 9

Execution Plan 9

* Exercise: In the demo code, you will find the same
query without the OrderQty column in the select list
(Query 9b). Try to guess what join operator will the
optimizer choose when the need for lookups is
eliminated? Try it…

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

PHYSICAL VS. LOGICAL SCAN ORDER

I would also like to draw your attention to another
interesting property of the execution plan. If you look
at the properties of either index scan above, you will
see the value 'false' for the scan property 'ordered'.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 36

This means that the storage engine is not required to
follow the logical chain links between the index leaf
pages that point to the 'next' and 'previous' pages.
Since the order of the retrieval of the rows is of no
significance to the hash match operator, the storage
engine will optimize the scan performance by scanning
the index pages in their physical order (by
following the IAM pages). This might prove to be a
significant performance gain, especially for indexes
with a high level of logical fragmentation. Go back and

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

look at this property for index scans of the execution
plans of the merge examples above.

Another thing we should note about hash joins is the
fact that, in contrast to both nested loops and merge
operators where the join operator may immediately
start outputting joined rows for further processing, no
rows can be outputted when using hash match until
the whole 'blue input' is fully hashed.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 37

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

CHAPTER 4:
Summary

// Page 38

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html

In a nutshell, we can sum up the main properties of
the three physical operators available to the SQL
Server optimizer when carrying out Equi-Inner-Joins.

PHYSICAL JOIN OPERATORS IN SQL SERVER

// Page 39

Table 1 - Summary

I hope this short discussion of the seemingly simple
SQL construct raised your curiosity. There are many
more aspects and considerations to joins which were
not even mentioned in this article. This is a fascinating
and highly complex subject.

If you are interested to dive deeper and learn more on
joins and their implementation in SQL Server, I highly
recommend Craig Freedman's SQL Server Blog on
MSDN. Craig has published a series of excellent, in
depth articles regarding many more aspects and types
of joins.

http://twitter.com/intent/tweet?text=Learn about physical join operators in SQL Server http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.facebook.com/sharer/sharer.php?u=http://www.dbsophic.com/physical-join-operators-ebook.html
http://www.linkedin.com/shareArticle?mini=true&url=http://www.dbsophic.com/physical-join-operators-ebook.html
http://blogs.msdn.com/craigfr/about.aspx
http://blogs.msdn.com/craigfr/about.aspx
http://blogs.msdn.com/craigfr/about.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx
http://blogs.msdn.com/craigfr/archive/tags/Joins/default.aspx

Download the free
Qure Analyzer solution
to quickly analyze and
compare SQL Server
trace files and trace
tables.

WANT INSIGHTS
INTO SQL SERVER
PERFORMANCE?

http://www.dbsophic.com/download-qure-analyzer.html?utm_source=eBook+CTA&utm_medium=eBook&utm_campaign=Physical+Join+Operators
http://www.dbsophic.com/download-qure-analyzer.html?utm_source=eBook+CTA&utm_medium=eBook&utm_campaign=Physical+Join+Operators
http://www.dbsophic.com/download-qure-analyzer.html?utm_source=eBook+CTA&utm_medium=eBook&utm_campaign=Physical+Join+Operators
http://www.dbsophic.com/download-qure-analyzer.html?utm_source=eBook+CTA&utm_medium=eBook&utm_campaign=Physical+Join+Operators
http://www.dbsophic.com/qure-analyzer.html?utm_source=eBook+CTA&utm_medium=eBook&utm_campaign=Physical+Join+Operators

